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Abstract

A simple one-dimensional, isothermal model is presented to study the ¯ow ®elds and the radial current in the scrape-

o� layer of a tokamak. It is shown how, using basic tensor properties, the radial current can be expressed as a function

of the ¯ows and the radial electric ®eld in a very simple way, provided that none of the curvature terms are neglected in

the toroidal momentum equation. The ¯ows are computed by solving the parallel momentum equation together with

the continuity equation. We have included convection, viscosity and neutral drag in all the equations. This ®nally results

in an almost linear relation between the radial electric ®eld and the radial current as is experimentally observed. Two

types of boundary conditions at the limiter or target, applied at the magnetic pre-sheath or the material boundary, in

the past a source of contradiction, are studied in detail. We show that the viscosity in the parallel momentum equation

levels out the marked di�erence which was encounterd in earlier theories between the two types of boundary conditions.

Our model predicts the experimentally observed trends on TdeV, the only anomalous e�ect introduced being the dif-

fusive radial velocity. The neutral interaction driven current is shown to be potentially very important. The physical

content of the equations, their relation to the Bohm±Chodura criterion and the poloidal dependence of the currents are

a point of particular attention. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The aim of this paper is to study the radial current,

the ¯ows and the pressure in the scrape-o� layer of a

Tokamak as a function of an applied radial electric ®eld.

Such a study addresses the mechanisms that govern non-

ambipolar radial transport and plasma conductivity

which can be important in H-mode bifurcation studies

[1,2] or biasing experiments [3]. Recently, Chankin and

Stangeby [4] showed the importance of the toroidicity

and of the boundary conditions on the net radial con-

ductivity. Their model however fails to predict the cor-

rect relation between the applied ®eld and the current as

observed in the TdeV biasing experiment [5]. Earlier the

e�ect of anomalous inertia and anomalous viscosity was

analysed by Rozhansky and Tendler [6]. Both studies

however neglect the in¯uence of neutrals.

In Ref. [7] we have built a more complete classical

model including neutral drag and viscosity, while at the

same time taking care to correctly implement all the

geometrical toroidicity e�ects. We now wish to further

analyse the radial current, estimating the in¯uence of the

curvature of the geometry, while also studying the po-

loidal dependence of the current density.

The scrape-o� layer of a divertor or limiter tokamak

can be studied using an isothermal, collisional ¯uid ap-

proximation [8,9]. The steady state continuity and total

momentum equations read

r � �n �V � � 0; �1�

r � �m � n � V V � � ÿrp ÿr � p� � � �J � �B� � �F neutrals;

�2�
where �V is the ¯ow velocity, n the density, p the total

pressure, p
�

the viscosity tensor, J the current density, m

the ion mass, B the magnetic ®eld and the neutral drag

force is given by

�F neutrals � ÿm � �V ; �3�
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where m is a drag coe�cient yet to be de®ned. These

equations will be used to compute the radial current, the

density (or the pressure) and the ¯ow parallel to the

magnetic ®eld V==.
The toroidal projection of the momentum Eq. (2)

will be used in Section 3 to compute the surface aver-

aged radial current. The unknown ¯ow velocity and the

density appearing in the equation for the current, will be

found in Section 4 by solving the continuity equation

together with the parallel projection of the total mo-

mentum equation. In Section 5, results of the numerical

model are shown and compared with the experimental

®ndings.

2. Basic de®nitions and properties

If we consider the toroidal component of the total

momentum Eq. (2), the radial current is expressed as

Ir � 1

B2

�r � �mnV V �3
� �� �

� 1

B2

�r � p��3
� �� �

ÿ 1

B2

Fneutrals

� �� �
; �4�

where the double brackets denote the integral over the

magnetic surface through which the current ¯ows and

(1,2,3) are curvilinear co-ordinates in the radial poloidal

and toroidal direction of the machine. The pressure term

has disappeared due to axi-symmetry.

It is easy to show that the two tensorial quantities in

this equation

�r � T
�
�3

B2

* +* +
� 2p

Z
x2

r � T
�� �

3

B2

� h2 � h3 � dx2; �5�

where T
�

is the convection or viscosity tensor and the hi

are the metric coe�cients of the curvilinear system of

reference, can be written as the sum of the following

terms:

�I� � 2p

Bo � Ro
~H

o
ox1

Z
x2

�h2 � h2
3 � T1;3� � dx2; �6�

�II� � 2p

Bo � Ro
~H
� �h1 � h2

3 � T2;3�
��
x2
: �7�

Note that this is only possible when no curvature terms

are neglected and that the expression is valid for a

general cross-section. We only suppose that the tensors

are symmetric. In the rest of the text however we will use

a circular cross-section and neglect the Shafranov shift

so that h1 � 1, h2 � r (minor radius) and h3 � R (major

radius). Fig. 1 depicts a cross-section of the machine and

the system of reference we use. We suppose that there

are two material plates in the scrape-o� layer, modelling

a limiter or a divertor.

The type (I) current involves the computation of el-

ement (1,3) of the considered tensor. Therefore, it in-

troduces the radial velocity in the model via the

convection tensor. This is important as we will consider

the radial velocity to be of turbulent origin and so in-

troduce the only anomalous e�ect in our model via this

current. Element (1,3) of the parallel or bulk viscosity is

zero. As a consequence this viscosity has no type (I)

contribution.

The shear and perpendicular viscosity tensors each

have non-zero elements (1,3) and (2,3). Their contribu-

tions in the current were checked and can be shown to be

negligible [7].

In the scrape-o� layer the magnetic ®eld interesects

material boundaries. The magnetic surfaces are open

and the partial integration term (II) is not zero. It

therefore introduces the boundary conditions in the

model.

3. The radial current

Using the property (Eqs. (6) and (7)) discussed in the

Section 2, we can evaluate the di�erent terms in Eq. (4).

We will suppose that all the variables are only function

of h (except ME considered constant and imposed by the

applied bias) and introduce the following dimensionless

quantities:

V== � M � Cs; V? � n �ME � Cs �H;
Vh � sin a � Cs � �M � n �ME� � sin a � Cs �Mp;

n � R=Ro; e � r=Ro; Cs �
��������������
Ti � Te

mi

r
:

�8�

a is the angle between parallel and toroidal direction and

H is the magnetic pitch. We can then compute the dif-

ferent contributions in the radial current.

Fig. 1. Poloidal cross-section and co-ordinate system.
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(i) for the neutral drag:

Ir;n � 2pecos a � R2
oCs

HBo

Zh2

h�h1

n2 � m �M � dh

8<:
9=;

264
ÿMEH2 �

Zh2

h�h1

n3 � m dh

8<:
9=;
375: �9�

(ii) for the convection tensor:

Here we have to distinguish between a type (I) and a

type (II) contributions. For (I) we ®nd

�I� � Ir; Conv�I�

� 2pm � D:cos a � Cs

Bo�RokrH
� o

or
r �
Zh2

h�h1

�R2n �M� � dh

8<:
9=;

264
ÿ H2 o

or
r �
Zh2

h�h1

�R2n � n� � dh

8<:
9=; �ME

ÿ H2 � r �
Zh2

h�h1

�R2n � n� � dh

8<:
9=; o

or
ME

� �375:
�10�

This current proves to be very small in comparison to

the other contributions.

The type (II) current is given by

�II� � Ir;Conv�II�

� 2p
BoRo

cos 2 aC2
s n�M� � nME� � �M ÿH2nME�

�h2

h1

�11�
and the radial velocity is modelled as anomalous di�u-

sion:

n � no�h� � eÿ�r=kr�; Vr � ÿD
n

on
or
� D

kr
: �12�

The type (II) terms are partial integration terms, in-

troducing the e�ect of the material boundaries. We

therefore must decide where exactly the boundary

should be taken. A ®rst possibility is to evaluate the

quantities at the entrance of the magnetic pre-sheath (s),

resulting in

I �s�r;Conv�II� �
2p
Bo

� R
2
T

Ro

� m � cos2 a � C2
s

� ��ns2 ÿ ns1� ÿME � nT �1�H2� � �ns2 � ns1��;
�13�

RT being the major radius at which the limiter is located.

In Ref. [4], on the other hand, it is argued that one

should rather consider the quantities at the material

boundary. It is possible to relate the values of n and M

at the entrance of the magnetic pre-sheath to those at the

plate (p) using a simpli®ed version of the parallel mo-

mentum equation:

�r � �m � n � V V ��== � ÿ�rP �==; �14�
where the parallel viscosity is neglected because the

sheath is collisionless.This results in

I �p�r;Conv�II� �
2p
Bo

� R
2
T

Ro

� m � cos 2 a

� C2
s �2�ns2 ÿ ns1� ÿME � nT � �ns2 � ns1�� �15�

(iii) for the parallel viscosity tensor:

Element (1,3) of this tensor is zero, resulting in only a

type (II) contribution. As the sheath is considered col-

lisionless, we only consider the (s) type boundary con-

dition for this current contribution and ®nd accordingly

I �s�r;Vis � ÿ
4p
Bo

RT

Ro

� �2 Cs � sin a � cos2 a
e

g0 � ��M 0
s2 ÿM 0

s1��;

�16�
in which g0 � 0:96nTisi is the viscosity coe�cient and si

the ion collision time.

The total radial current then is given by the sum of

Eqs. (9) and (13) or Eqs. (15) and (16):

Ir � Ir;n � I �s�or�p�
r;Conv�II� � Ir;Vis: �17�

4. The parallel momentum and continuity equations

The current cannot be evaluated without the know-

ledge of M and n as functions of h. These pro®les are

obtained by solving the continuity and the parallel mo-

mentum equations, which read

n0 � Fnÿ n�M 0 � n0 �ME� ÿ n n0
n Mp

Mp

; �18�

M 00 �
�
ÿ 4

3
A �Mp

�
�M 0 � n �M2

p

(
ÿ nÿ 2 � A � n

0

n
�Mp

)

� F � �n
(

� M � n �Mp� � n �ME � n0 � �M ÿH2nME�

�Mp � A
�n0�2

n
�ME �Mp ÿ n

n0

n
�Mp

ÿ n0 � n �ME � A � 2
3
� n00 �ME �Mp � n � B �MMp

)
� 0

�19�
with

F � r � D
k2

r � sin a � Cs

; A � g0 � sin a
m � r � Cs

; B � m� � e � Ro

Cs � m � sin a
:

The boundary conditions available for these equations

are given by the Bohm±Chodura criterion [10], which in

our variables reads
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M � nT �ME � �1: �20�

5. Results and discussion

The system of Eqs. (18) and (19) describes the evo-

lution of the Mach number and of the density in the

poloidal direction. Provided ME is given, these equations

can be integrated in the scrape-o� layer from one target

or limiter side, following the considered magnetic sur-

face until the other target or limiter side is reached. This

results in a set of density and Mach pro®les. Then the

current can be computed from Eq. (17), so that a plot of

the current versus ME can be made.

For a convenient comparison, the current will be

represented in the dimensionless form introduced by

Chankin and Stangeby [4] and de®ned as

I� � Ir

2pRo

1

ehniqCs

; q � Cs

xio
� m � Cs

e � Bo

: �21�

This de®nition makes the current independent of hni, the

surface averaged density, and of the temperature so that

comparison between di�erent machines becomes possi-

ble. As we will introduce viscosity and neutral drag we

need nevertheless the ion temperature, to compute the

viscosity coe�cient and the neutral density pro®le, both

of which are machine dependent. Our reference case is

the TEXTOR-94 L-mode edge plasma with Bo � 2T ,

Ro � 1:75m and e � 0:27, for which the pro®les were

computed with B2, a two-dimensional plasma edge code,

supplemented with EIRENE, a Monte±Carlo neutral

particle code [9]. The used pro®les are represented in

Fig. 2. The limiter is considered at 45� below the equa-

torial plane at the outboard side, resulting in h1 � ÿp=4

and h2 � h1 � 2p.

We will start our discussion leaving the neutral in-

teractions and the viscosity out of the parallel momen-

tum equation (case A � B � 0). Next we include the

neutral interactions and the viscosity and compare the

full model with experimental measurements.

5.1. Case A� 0; B� 0

Eq. (19) then reduces to

M 0 � fF � �1�M �Mp� �ME � n0 � �M ÿH2nME� �Mp

ÿ n0

n
�Mp ÿ n0 �MEg=f1ÿM2

pg;
�22�

while the density can be computed from

n0 � ÿn � fF �M �M 0 �Mp �ME � n0 � �M ÿH2nME�g:
�23�

These are, to order of H2, the equations as given by

Chankin and Stangeby [4].

Eqs. (22) and (23) can be solved by imposing the

boundary condition at one side of the domain and then

to adjust F, which governs the steepness of the Mach

pro®le, until also at the other side the correct boundary

condition is reached.

F is found to vary with an average value of 0.25 when

we vary ME. As the density decay length in TEXTOR in

the considered region is of the order of 3 cm, this value

corresponds to D � 1.8 m2 s, which is quite realistic.

The solution of these equations, the resulting currents

and a comparison with earlier theories by Chankin and

Stangeby [4] and Rozhansky and Tendler [6] were ex-

tensively studied in Ref. [7].

Here, we wish to further analyse the equations.

Eq. (22) is interesting because it introduces the Bohm±

Chodura criterion in a natural way. Indeed, in the vi-

cinity of the sheath, the temperature drops, the viscosity

accordingly is reduced and Eqs. (19) and (22) become

equivalent. Eq. (22) becomes singular when M2
p � 1,

which means that the sheath is reached. We therefore

®nd the same criterion as Chodura in [10].

The di�erent terms in Eq. (22) can be interpreted in

the following way. In the numerator:

(i) F �1�MMp� is introduced by adding the conti-

nuity equation to the parallel momentum equation

and describes the particle input in a ¯ux tube. It is

this term that governs the steepness of the Mach

pro®le [4,7].

(ii) ME � n0 � �M ÿH2nME� �Mp is introduced via the

curvatre terms in the connnection error.

(iii) n0=n �Mp describes the variation of the cross-

section of the ¯ux tube when going from the out-

board to the inboard side of the torus.

(iv) n0 �ME appears because we consider the parallel

momentum equation, describing the transport of
Fig. 2. Neutral density �1010cmÿ3� and ion temperature (eV) as

a function of poloidal angle.
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parallel momentum. The convection tensor how-

ever describes the convection of this parallel mo-

mentum in the poloidal direction.

In the denominator the factor (1ÿM2
p ) appears. It is for

this same reason as mentioned in (iv) that we do not ®nd

�1ÿM2�, but rather a function of the poloidal Mach

number. Therefore, this phenomena is at the basis of the

Bohm±Chodura criterion.

The term described in (iii) would place the eventual

sonic transition, possible when solving Eq. (19), in the

troath section of the ¯ux tube, which is at the inboard

side of the torus, in the equatorial plane where h � p.

Due to the extra terms we see that the spot where the

transition occurs is shifted. This is clearly depicted in

Fig. 3, showing a solution where ME � 0:8 and

F � 0:2295. Mp increases to 1 and then decreases again.

This means that the value chosen for F is too small.

Indeed at the second target we see that Mp < 1 so that

the Bohm±Chodura criterion is not met. The point

where Mp reaches 1 however and where the transition

occurs when we increase F is at h � 3:8 rad.

5.2. Case A 6� 0; B 6� 0

Eq. (19) is now a second order equation. F is not a

free parameter and is taken equal to the average of the

values necessary to ful®l the boundary conditions in

Section 5.1. On both sides of the integration domain the

Bohm±Chodura boundary conditions �Mp � �1� are

imposed. Solving the equations results in the plots rep-

resented in Fig. 4 for the Mach and density pro®les and

Fig. 5 for the meaningful current contributions.

We note the following:

(i) I�r;Vis is small. As it is a type (II) current, it only

depends on the values of the parameters at the level of

the material boundary, where the temperature is much

lower than average. This reduces the viscosity coe�-

cient, proportional to T 5=2
i , and accordingly the current.

It should also be noted that we took for the temperature

pro®le a case without bias. It is clear that if the bias

would have an in¯uence on the temperature pro®le,

possible asymmetries between the boundaries would

have an in¯uence on the current. Finally, we see that
Fig. 3. n, Mp and M as functions of the poloidal angle for ME �
0:8 and F � 0:2295.

Fig. 4. Case B 6� 0, A 6� 0. Mach pro®les (lower curves) and

normalised density (upper curves) as functions of the poloidal

angle for three cases of ME.

Fig. 5. Case B 6� 0, A 6� 0. Dimensionless currents as functions

of ME.
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I�r;Vis has no term proportional with ME. This is due to

our hypothesis that ME is constant in the poloidal di-

rection so that it disappears in Eq. (16). The result is

that I�r;Vis is more or less constant over the whole region

of values of ME.

(ii) The di�erence between I �p�r;Conv�II� and I �s�r;Conv�II� is

due to the boundary conditions, but it is not very pro-

nounced now. In both cases the currents respond cor-

rectly to ME.

(iii) The neutral friction deserves particular attention.

We approximate the neutral drag coe�cient by [11]

m � n � m � nn � hr � V i � n � m � nn � �10ÿ8�Ti0:318�� �24�
with nn the neutral density and Ti the ion temperature

expressed in eV, the pro®les of which are given in Fig. 2.

The current contributions found are given in Fig. 5.

Neutral friction therefore can contribute strongly to the

current, and would become the dominant source when

the actual neutral density were to be higher than the

computed one.

As this is the complete model we can compare it with

a real experiment as for example performed on TdeV [5].

The comparison is possible as TdeV and TEXTOR are

machines of comparable dimensions using ohmic plas-

mas for biasing experiments and I�r; conv does not depend

on the average density. However the comparison of Ir;n

and Ir;Vis is much more delicate as they largely depend on

the exact neutral density and ion temperature pro®les.

In the following table we compare dI�=dME, the rate

of change of I� with ME found in TdeV with the pre-

dictions of our modelling.

One notes that the combination of Ir;n and either

I��p�r;Conv�II� or I��s�r;Conv�II� is comparable to the experimental

value and that the tiny di�erence between the latter two

currents makes it impossible to judge which type of

boundary condition is the more realistic.

5.3. The poloidal dependence of the currents

Although Eqs. (6) and (7) o�er a powerful tool to

compute the radial current, it is also interesting to study

the poloidal dependence of the current densities.

We will do this for the two major contributions,

namely Ir;n and Ir;Conv�II�. For the latter we will only

consider the (s) boundary conditions as there is very

little di�erence between the two cases when viscosity is

included in the parallel momentum equation.

5.3.1. Ir;n

When we look at Eq. (9) and the considered neutral

density pro®le (Fig. 2), we see that the two integrals

contribute only very close to the plates. The current

density due to neutral friction is therefore highly local-

ised.

The reason why Ir;n responds to changes in ME is

twofold.

(i) The second integral in Eq. (9) is proportional to

ME. This e�ect is rather weak because the term is mul-

tiplied by H2.

(ii) The ®rst integral contains M. When ME is zero the

M pro®le is practically symmetric, going from ÿ1 to +1

(Fig. 4). As a consequence, two current densities ¯ow at

the level of the plates which are almost equal in mag-

nitude but have opposite sign. This results in a current

that is near to zero. When on the other hand ME is

di�erent from zero, the M pro®le shifts up �ME < 0� or

down �ME > 0�, due to the Bohm±Chodura boundary

conditions. Because of this the current densities at the

plates become unequal in magnitude. The result is that

the ®rst integral in Eq. (9) gives a non-zero current.

We can conclude that the Bohm±Chodura criterion is

at the basis of Ir;n.

5.3.2. Ir; conv�II�
This current contribution, given by Eq. (11), can be

written as the sum of two current densities:

Jmain
r;Conv�II� �

1

Bh

1���
g
p o

oh
R � T

�
h;/

� �
� 1

rHBoRo

o
oh
�R � mnVhV/�; �25�

which is also present in a straight geometry, and

J curvature
r;Conv�II� �

1

Bh

1���
g
p T

�
h;/

oR
oh
� 1

rHBoRo

mnVhV/
oR
oh
; �26�

which is due to the curvature of the ¯ux surfaces.

Fig. 6 shows the related reduced current densities,

de®ned in the same way as the dimensionless current

(Eq. (21)).

We see that the curvature part is smaller and varies

less than the main part, although it reaches about 50%

of the main part at the right hand side of the domain.

The steep increase of J �main is mainly due to the shape of

the Mach pro®le.

When ME changes to +0.4, the pro®les (not shown

here) are lowered, giving then rise to a negative total

integral. The response of J �main to ME is more pronounced

than that of J �curvature.

Current dI�=dME

I�r;TdeV ÿ5.4

I�r;Conv�I� 0

I��p�r;Conv�II� ÿ1.6

I��s�r;Conv�II� ÿ2

I�r;n ÿ3

I�r;Vis 0

M. Van Schoor, R. Weynants / Journal of Nuclear Materials 266±269 (1999) 1240±1246 1245



6. Conclusions

We have shown that the study of the radial current in

the scrape-o� layer is greatly aided by starting from the

toroidal projection of the momentum equation, as in this

case, provided all the curvature terms are retained, very

compact expressions result, even when viscosity and

neutral interaction is included. A detailed analysis of the

relative contribution of convection, viscosity and neutral

interaction in the radial current is then possible. The

introduction of viscosity terms strictly weakens the im-

pact of the modelling of the boundary conditions at the

limiter or targets. Whereas the exact location where

these are applied (the magnetic pre-sheath or the mate-

rial boundary) have led in the past to strongly diverging

results as discussed in Ref. [4], we now ®nd that the

experimentally observed dependence of the current on

the radial electric ®eld is retrieved under both conditions

for the convectively driven current. It should be stressed

that the in¯uence of viscosity is mainly indirect, through

its e�ect on the poloidal pressure pro®le via the conti-

nuity and parallel momentum equation. The direct ef-

fect, the viscosity driven radial current, is rather weak.

To explain the experimental results found on TdeV

[5], our model shows that anomalous e�ects need not

necessarily be invoked. Both convective and neutral in-

teraction drive seem to be active, although detailed

measurements are lacking to further evaluate the extent

of the latter's role. In view of the strong dependence of

the viscosity driven current on the ion temperature, a

re®nement of the model by including a temperature

equation might still be in order.

We studied the Bohm±Chodura boundary conditions

and further showed that the poloidal current densities

can be studied and how they respond to the applied

electric ®eld.
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Fig. 6. The poloidal dependence of the di�erent current densi-

ties contributing to IrConv�II� when ME � ÿ0:4.
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